Interactions Between Biological and Abiotic Pathways in the Reduction of Chlorinated Solvents
نویسندگان
چکیده
John T. Wilson While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zero-valent iron (ZVI)–based technologies, such as nanoscale iron and bimetallic ZVI, as well as naturally occurring reduced minerals incorporating dual-valent iron (DVI), such as magnetite, green rust, and iron sulfides that are capable of dechlorinating solvents. A more recent area of development in ISCR has been in combining biological and abiotic processes. There are several ways in which biological and abiotic processes can be combined. First, the interaction between the two may be “causative.” For example, the Air Force Center for Engineering and the Environment’s biogeochemical reductive dechlorination (BiRD) technology combines a mulch barrier with hematite and gypsum to create an iron-sulfide-based reducing zone. Biodegradation under sulfate-reducing conditions produces sulfide that combines with the hematite to form iron sulfides. As such, the BiRD technology is “causative”; the biological processes create reducing minerals. The biological generation of other reducing minerals such as magnetite, siderite, and green rust is feasible and is, with magnetite, observed in nature at some petroleum sites. A second type of interaction between abiotic and biotic processes is “synergistic.” For example, biological processes can enhance the activity of reduced metals/minerals. This is the basis of the EHC® ISCR technologies, which combine ZVI with a (slowly) degradable carbon substrate. This combination rapidly creates buffered, strongly reducing conditions, which result in more complete solvent degradation (i.e., direct mineralization). The extent and level of reducing activity commonly observed are much greater when both the carbon substrate and the ZVI are present. When the carbon substrate is expended, the reducing activity due to ZVI alone is much less. The understanding of biogeochemical processes and their impact on abiotic processes is still developing. As that understanding develops, new and improved methods will be created to enhance volatile organic compound destruction. Oc 2009 Wiley Periodicals, Inc.
منابع مشابه
Abiotic and Biotic Pathways in Chlorinated Solvent Natural Attenuation
Abiotic degradative pathways are often overlooked when evaluating natural attenuation at chlorinated solvent sites. Yet, at many sites, significant degradation of parent compounds such as 1,1,1-TCA, PCE and TCE is observed without the corresponding accumulation of daughter products, a sure indication of abiotic reactions. The problems in integrating abiotic processes into MNA are how to prove t...
متن کاملAbiotic degradation of chlorinated ethanes and ethenes in water
INTRODUCTION Chlorinated ethanes and ethenes are among the most frequently detected organic pollutants of water. Their physicochemical properties are such that they can contaminate aquifers for decades. In favourable conditions, they can undergo degradation. In anaerobic conditions, chlorinated solvents can undergo reductive dechlorination. DEGRADATION PATHWAYS Abiotic dechlorination is usual...
متن کاملSpectroscopic Study of Charge Transfer Complexes of Dibenzo-24-crown-8 (DB24C8) with Iodine in Three Chlorinated Solvents
Charge Transfer (CT) complexes formed between dibenzo-24-crown-8 (DB24C8) as an electron donor with the σ-electron acceptor iodine (I2) in chloroform, dichloromethane, and 1,2-dichloroethane solutions have been studied by different spectroscopic techniques at room temperature. The spectral studies of the complexes were det...
متن کاملThe impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane.
1,4-Dioxane (dioxane), a probable human carcinogen, is used as a solvent stabilizer for 1,1,1-trichloroethane (TCA) and other chlorinated solvents. Consequently, TCA and its abiotic breakdown product 1,1-dichloroethene (DCE) are common co-contaminants of dioxane in groundwater. The aerobic degradation of dioxane by microorganisms has been demonstrated in laboratory studies, but the potential ef...
متن کاملI-34: Interactorme of Human Embryo Implan Implantation:Pathways,Networks
Background: A prerequisite for successful embryo implantation is adequate preparation of receptive endometrium and the establishment and maintenance of a viable embryo. The success of implantation further relies upon a two-way dialogue between the embryo and uterus. However, molecular bases of these preimplantation and implantation processes in humans are not well known. Materials and Methods: ...
متن کامل